
 
 

 

 

 
Abstract— Cloud Robotics is the application of the cloud 

computing concept to the robot. It utilizes modern cloud 

computing infrastructure to distribute computing resources and 

datasets. A cloud based localization technique is proposed in this 

paper to allow the robot to identify its location relative to a road 

network map in the cloud. The update of the road network map 

and the extraction of the robot-terrain inclination model (RTI 

model) are running in the cloud. A particle filter localization is 

achieved on the mobile robot based on the local RTI model sent 

from the cloud. Experiments were carried out for validation of 

the proposed cloud based localization technique. Preliminary 

results show that this method could be potentially applicable to 

long-term autonomous. 

Index Terms—Cloud robotics, localization, Mobile robot. 

I. INTRODUCTION 

ocalization is an important problem for autonomous 

mobile robot. Traditional robotic technologies, however, 

have been limited by the inherent physical constraints 

especially for large-scale explorations since all the 

computations have to be conducted in the onboard 

computers/microchips of the robot that have limited 

computing capabilities. Hence this paper proposes a 

cloud-based architecture to achieve long-term autonomous 

localization of mobile robots in outdoor environments 

taking advantage of the powerful computation, storage and 

other shared resources of the cloud. 

In the last decade, many researchers have started to 

focus on the robot localization in outdoor environments. 

GPS is a popular tool for localization in outdoor 

environments[1-2]. However, in some urban 

circumstances, the signals would be blocked resulting in 

degrading of the position estimates. Laser range scanner is 

an option for autonomous outdoors navigation where the 

point clouds were generated for representation of the 

surroundings[3-9]. However, the con of the point clouds 

representation was higher computational load [3]. The 

combination of point reduction and kd-tree was proposed 

to reduce the computational load of point clouds 

representation[4]. Some researchers used the occupancy 

grid map to divide the whole point clouds into a grid of 

cells with the occupancy evidence inferred from sensors[5]. 

Since the representation of the entire space must be stored 

in memory, even 2D evidence grids are large and 

expensive to copy. In order to reduce the processing and 

storage requirements, an octree data structure was further 

developed to finish a underwater tunnel exploration 

project using a simplified occupancy grid map[6]. On the 

other hand, several researchers proposed to sort the raw 

point clouds data in the way of the standard elevation map 

(DEM)[7-8] and the multi-level surface map (MLS)[9]. 

The application of the vision systems for outdoor 

localization has also received increasing attention[10]. 

Different robust core algorithms such as the Scale 

Invariant Feature Transform (SIFT), the Position Invariant 

Robust Feature (PIRF) and etc. have been developed to 

adapt to the complex outdoor environments[11-12]. But 

unpredictable long computation periods still made the 

above techniques fail for many real-time applications[13]. 

Outsourcing map based localization is another kind of the 

methods to estimate the robot position. Mandel et al. 

proposed a novel approach to take advantage of the road 

network’s structure and its height profile for position 

estimation when GPS was lost [14]. Our research group 

also proposed a new localization method with less 

occupied memory where the topographical map was 

utilized as the prior available terrain map for 

localization[15]. However, in the case of the large-scale 

exploration and long-term autonomous, all the above 

efforts are not enough. 
Recently few researchers have tried to face the 

challenges on the long-term autonomous robot in outdoor 

environments where the mobile robot is expected to run 

autonomously over a long period of time and adapt to the 

real dynamic scenarios. Zhao et al. proposed a 

simultaneous localization and mapping (SLAM) method to 

simultaneously detect and track the moving objects using a 

laser scanner in a dynamic environment[16]. The authors 

found out that the method was very time-consuming to 

track many static or moving objects. Badino et al. and 

Neubert et al. described a novel concept of appearance 

change prediction to learn how the environment changes 

over time beforehand, and then take advantage of the 

learned knowledge to predict its appearance under 

different environmental conditions[17-18]. The key 

limitation of this method was the requirement of a large 

storage space to store different environmental conditions 

as many as possible and the map information of the 

navigation area. On the other hand, if the real environment 

changed, it would be hard to update the map. Cloud 

robotics provides a very promising solution to overcome 
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such problems[19]. Cloud robotics is applying the cloud 

computing concept to robots in order to augment the robots 

capabilities by off-loading computation and shares huge 

data or new skills via the internet. 

The related works on cloud robotics are still rare so far. 

Arumugam et al. built a cloud computing infrastructure 

“DAvinCi” to improve the implementation speed of 

simultaneous localization and mapping (SLAM) [20]. 

Kehoe et al. developed an architecture for a cloud robotics 

system to recognize and grasp the common household 

objects[21]. Wang et al. introduced a generic infrastructure 

of cloud robotic system to enable several poor-equipped 

robots to retrieve location data from a dynamically 

updated map which was built by a well-equipped 

robot[22]. 

In this paper, we proposed a cloud based localization 

technique using outsourcing road network maps to achieve 

long-term/large-scale autonomous navigation of the 

mobile robot in outdoor environments. The proposed 

technique in this paper is aimed to solve two problems. 

One is that GPS would receive insufficient satellite signals 

among the buildings and other constructions during the 

long-term outdoor autonomous navigation. The other 

problem is that the long-term/large-scale autonomous 

navigation would require greatly increasing computational 

payloads. Hence the road network maps are first extracted 

by Google Earth, OpenStreetMap or other commercially 

available resources such that the new roads could be added 

into the map database in the cloud. The Terrain Inclination 

Aided Localization algorithms recently proposed by our 

research group will then be applied to achieve online 

localization only taking advantage of the road network 

maps stored in the cloud [15]. In this paper, the cloud can 

not only provide storage space to store the large amount of 

map data, but also provide a new way to obtain the latest 

map information. 

The structure of this paper follows. Background and 

Related work are discussed in Section 1. The cloud 

robotics architecture and the detailed algorithms are 

proposed in Section2. Experimental results and discussion 

are presented in Section 3. Conclusions are described in 

Section4. 

II. CLOUD ROBOTICS ARCHITECTURE AND ALGORITHMS 

The proposed cloud robotics architecture has two phases: 

offline and online, Figure 1.  

A. Offline phases 

The offline phase is to extract the new road networks and 

add them to the road network map stored in the cloud 

before each task is executed, Figure 1. In order to obtain 

the new road networks, a set of points were labeled along 

the new roads, Figure.2. Then the geodetic coordinate 

(latitude, longitude, altitude) of these points located on the 

road networks together with the new road names can be 

extracted from the Google Earth that could provide the 

latest information of the roads. Therefore the road network 

map in the cloud is updated and ready for online task 

execution.  

B. Online phases 

The online phase is to achieve the localization task based 

on the latest road network map. According to Figure 1, the 

cloud based architecture consists of two sections: the 

mobile robot and the cloud. The cloud part includes the 

updated road network map and the RTI model proposed by 

our research group [23]. RTI model is used to describe the 

relationships between the robot attitude and the robot 

position and can be extracted from the road network map. 

When the robot moves on a road, the initial position 

estimated by the GPS will be sent to the cloud. If GPS 

signal is not on the road, the estimated initial position will 

be pulled to a nearest road point by searching the road 

network map. This road point would be treated as the new 

estimation of the initial position. All the road segments 

within the neighborhood of the initial estimation with the 

radius of  are searched. The robot-terrain inclination 

(RTI) model for the corresponding road segments is then 
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Figure 1.Cloud-based localization Architecture. 

 

Figure.2. Google Earth and the points sets on the pre-planned path. 



 
 

 

 

computed in the cloud and sent back to the robot. 

On the robot part, a 3-D inertial sensor is installed to 

measure the attitude and velocities of the robot. Then a 

particle filter algorithm is used to incorporate the inertial 

sensor data to determine the 3-D position of the robot 

based on the RTI model sent from the cloud. 
 

RTI Model in the Cloud: 
Suppose there is one portion of the road networks 

1 1 j jB A B A , Figure 3. The positions of the point set on the 

road are first transformed from the geodetic coordinate 

(latitude, longitude, altitude) to the Cartesian coordinate (x, 

y, z). It is then projected onto the x-O-y plane as 

1 1 j jB A B A    , Figure 3. The projected road is segmented 

into a series of line segments with a fixed interval L k  

where L  is the length of the robot. The j jB A 
 
represents 

the thj line segment. The points jB   and jA   are the 

projections of the road points jB and jA , respectively. The 

z value of these road points can be obtained by a weighted 

average interpolation method from the road network map 

[24]. When the robot moves above the thj  line segment 

along the pre-planned path, the points jB and jA  represent 

the midpoint between two ground contact points of the 

front wheels and the left-rear wheel, respectively.  

The j jB A  represents the direction of the robot motion, 

Figure 4. The heading angle, 
j ,is defined as the angle 

between the 
j jB A   and the x axis. The heading angle is 

exclusively determined by the path. The angle 
j  is 

defined as the one between the robot direction j jB A  and 

the x-O-y plane. So the angles 
j  can be obtained from the 

following equations, 

 1 ( )
sin ( )A B

j

j j

z z

B A
  

  (1) 

 2 2 2( ) ( ) ( )j j B A B A B AB A x x y y z z       (2) 

where the coordinate information of the points includes 

jB = ( , , )B B Bx y z
 
and jA = ( , , )A A Ax y z .Therefore, a number 

of angles (
j ,

j ) can be extracted from the serial line 

segments j jB A  . Then the robot position ( , , )j j jx y z
 
at 

each line segments corresponds with each group (
j ,

j ).By linear interpolation of the above discrete 

relationship,   _ ( , , )
T

k k k k kRTI Model x y z    can be 

obtained, 1,2, ,k N . The number N can be adjusted for 

the accuracy requirement.  

 

Communication between the Cloud and the Robot: 

Assumption in this paper is that the robot and the cloud 

share with the same network. The cloud service creates the 

listener socket that is waiting for remote clients to connect. 

The client issues the connect() socket function to start the 

TCP handshake. This socket contains many parameters of 

the client, such as IP address, port number and so on. If 

these parameters are the same as those in the listener 

socket, then the cloud server issues the accept() socket 

function to accept the connection request. Thus the 

communication between the cloud and the robots can be 

established. 

 

Particle Filter Algorithm on the Robot: 

See the detailed algorithm in Table 1.The system state, t
X , 

represents the three-dimensional position of the robot in 

the inertial frame (x, y, z) at the time t. The superscript [m] 

denotes the particle m, T is the sampling period, and tv  is 

the linear velocity in the direction of robot movement.
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Figure 3.Robot path is segmented into a series of line segments. 
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Figure 4.Geometric extraction of RTI model. 
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_RTI Model  
and _RTI Model  

are the RTI model 

downloaded from the cloud that is treated as the 

measurement model. [ ] [ ] [ ]( , , )m m m

t t tp x y z represents the 

position of the particle m and ( , , )p x y z  represents the road 

point on the robot path closest to this particle that is gained 

from the map. [ ]ˆ m

tdist is the distance between the particle m 

and the point ( , , )p x y z [14]. [ ]m

tw
 
is the weighting factor of 

the particle m for resampling of the particle filter. 

III. EXPERIMENTS AND DISCUSSION 

A. Methods and Procedures 

The experiments were conducted on the platform, a 
Summit XL mobile robot. The NAV440 from Crossbow 

Technology was used as the inertial measurement unit 
(IMU) that mounted on the top surface of the robot in order 
to measure the roll, pitch, yaw angles. The measurement 
accuracy was 0.5 degree in the roll and pitch directions 
while 1 degree in the yaw direction. The line velocity of the 
robot was provided by the encoders. An outdoor 
environment with the area of 200m x 400m in the Shenzhen 
University Town, Figure.2, was used for performance 
evaluation. The sampling period for all experiments is 0.1s.  

B. Results and Discussion 

The road networks of the selected area were extracted from 

the Google Earth and sent to the cloud service before the 

localization task started. Comparing with the road network 

database saved previously (Figure 5 (a)-(b)), it was found 

out that Road #1 and #2 on the current road networks were 

new, Figure 5 (b). Therefore,the latest road network 

information was updated in the cloud. 

When the Summit robot started to move on the road, the 

initial position estimation by GPS, 1G , was transmitted to 

the cloud service. So the short-distance road point, 1E , 

was searched in the cloud because this estimated position 

was not on any of the road. The roads within the 

neighborhood of the point 1E  with the radius 200m were 

obtained, Figure 5 (b). Then a local RTI model starting 

from this new initial point along the pre-planned path was 

computed in the cloud service and sent back to the mobile 
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(a) Road networks previously existing (b)Updated road networks from the Google Earth 

Figure 5.Road networks of the experimental area. 

Table 1 Algorithm: Particle Filter based localization 

1:  ( 1tX  , tv , tz ) 

2: [1] [2] [ ]

1 1 1 1, ,..., M

t t t tX       , , ,t t t tz dist  , tQ , t tX X    

3: for m=1 to M do 
4: [ ] [ ]
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//motion model
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// measurement model
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// weight calculation 

7: Add [ ]m

t and [ ]m

tw  to tX

 8: endfor 
9: for m=1 to M do 

10: Draw i with probability  [ ]i

tw  

11: Add [ ]i

t to tX  

12: endfor 

13: return [1] [2] [ ], ,..., M

t t t tX     
 



 
 

 

 

robot. Finally, the localization can be achieved on the robot 

by applying the particle filter algorithm in Section 2. The 

estimated position at the end of each 200m travelling 

distance of the robot (E2 and E3 in Figure 6) was sent to 

the cloud again, and the above procedures were repeated.  

Figure 6 depicts the position estimation of the robot by 

the proposed technique (solid line) compared with the GPS 

alone (dashed line) and the reference positions (circle 

signs) with the robot speed 1.0m/s. According to Figure 6, 

the position estimation by the proposed method was much 

closer to the ground truth values inside the Area 1 (from 

the reference point 1 2R R ) and Area 3 ( 3 4R R ). On 

the Area 2(from the reference point 2 3R R ), the 

performance of the proposed method was quite similar to 

the one estimated by GPS alone. It was found out the Area 

2 was a wide playground and GPS signal was already 

effective while Area 1 was surrounded by two buildings 

and GPS signals were worse. The same phenomena were 

also observed in Figure 7. Figure 7 shows the comparison 

of the position estimation errors using the proposed 

technique (circle sign) and the GPS alone (circle sign). The 

estimation error at the travelling distance of 380m was up 

to (9m, 9m) using GPS alone according to Figure 7 

because GPS was partially blocked. This result has 

apparently pointed to somewhere off-road. At the same 

time, the estimation error using the proposed method has 

reached to the value (0.3m, 3m). This estimated position 

was still on the road, which was coincident with the actual 

fact. Hence it is concluded the proposed cloud based 

technique can achieve online localization for large-scale 

road networks. In the near future, more long-term 

experiments will be carried out, and more complex 

scenarios will be considered. 

IV. CONCLUSIONS 

This paper introduces a cloud-based outsourcing 

localization technique for a mobile robot on outdoor road 

networks. Preliminary experimental results validate the 

proposed technique and illustrate that the proposed 

technique has capability to achieve online localization 

taking advantage of outsourcing road network maps and 

the relative algorithms in the cloud. This method will be 

applied to more large-scale/long-term circumstances. 
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Figure 6. The estimation of the robot position by the proposed technique. 
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Figure 7.The position estimation errors of the robot using the proposed technique. 

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

distance(m)

e
rr

o
r 

in
 x

 d
ir
e
c
ti
o
n
(m

)

 

 
TIL based on Particle Filter

GPS

50 100 150 200 250 300 350 400 450 500

1

2

3

4

5

6

7

8

9

10

distance(m)

e
rr

o
r 

in
 y

 d
ir
e
c
ti
o
n
(m

)

 

 
TIL based on Particle Filter

GPS

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Triebel:Rudolph.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Burgard:Wolfram.html
http://www.informatik.uni-trier.de/~ley/db/conf/iros/iros2006.html#TriebelPB06

