
Rapyuta: The RoboEarth Cloud Engine

Dominique Hunziker, Mohanarajah Gajamohan, Markus Waibel, and Raffaello D’Andrea

Abstract— In this paper we present the design and implemen-
tation of Rapyuta1, the RoboEarth Cloud Engine. Rapyuta is an
open source Platform-as-a-Service (PaaS) framework designed
specifically for robotics applications. Rapyuta helps robots to
offload heavy computation by providing secured customizable
computing environments in the cloud. The computing environ-
ments also allow robots to easily access the RoboEarth knowl-
edge repository. Furthermore, these computing environments
are tightly interconnected, paving the way for deployment of
robotic teams. We also describe specific use case configurations
and present some performance results.

I. INTRODUCTION

The past decade has seen robots begin to move from fac-
tories into household-like environments, folding towels [1]
and serving drinks [2]. The demand for these service robots
is predicted to grow steadily in the coming decades [3]. But
moving from half a century of comfort in structured fac-
tory environments to highly unstructured, non-deterministic
household environments presents the robotics community
with several challenges.

Computing power is a key enabler for solving some of
these challenges. However, on-board computation entails
additional power requirements, which may constrain robot
mobility, reduce operating duration, and increase costs. The
computational burden of a service robot can be reduced
by offloading those tasks that do not have hard real time
requirements to a cloud computing infrastructure [4], [5].
These tasks include grasp planning [6], [7], mapping [8],
and navigation. The rapid increase in mobile data transfer
rates [9] makes more and more robotics tasks feasible for
execution in the cloud.

Running robotics applications in the cloud falls into
the Platform-as-a-Service (PaaS) model [10] of the cloud
computing literature. In PaaS the cloud computing platform
typically includes an operating system, an execution environ-
ment, a database, and a communication server. Unfortunately
differences between web and robotics applications make
it hard to use existing web solutions for robotics. Such
differences include programming languages, the number of
processes (robotics applications contain multiple processes
while web applications are typically single processes), and
the communication protocols (a request/response based state-
less model is sufficient for most web applications, while most
robotics applications require servers with stateful protocols to

The authors are with the Institute for Dynamic Systems and Control,
Swiss Federal Institute of Technology Zürich, Switzerland. The contact
author is M. Gajamohan, e-mail: gajan@ethz.ch

1The name is inspired from the movie Tenku no Shiro Rapyuta (English
title: Castle in the Sky) by Hayao Miyazaki, where Rapyuta is the castle in
the sky inhabited by robots.

Fig. 1. Simplified overview of the Rapyuta framework: Each robot
connected to Rapyuta has a secured computing environment (rectangular
boxes) giving them the ability to move their heavy computation into the
cloud. The computing environments are tightly interconnected with each
other and have a high bandwidth connection to the RoboEarth knowledge
repository (stacked circular disks).

push information asynchronously to the robot). For example,
a general PaaS platform such as the popular Google App
Engine [11] is not well suited for robotics applications since
it exposes only a limited subset of program APIs required
for a web application, allows only a single process, and does
not expose sockets, which are indispensable for robotic mid-
dlewares such as ROS [12]. Although Heroku [13] provides
some freedom in the programming APIs and sockets, it does
not allow the server to push data to the robot, and has no
networking between the computing environments to allow
robots to share information.

During the past few years, first efforts to build a
cloud computing framework for robotics have emerged. The
DAvinCi Project [8] used ROS as the messaging framework
to get data into a Hadoop cluster, and showed the advan-
tages of cloud computing by parallelizing the FastSLAM
algorithm [14]. It offered a single computing environment
without process separation or security, while the interprocess
communication was managed by a single ROS master. Un-
fortunately, The DAvinCi Project is not publicly available.
While the main focus of DAvinCi was computation, the
ubiquitous network robot platform (UNR-PF) [15], [16], an
on-going project, focuses on using the cloud as a medium for
establishing a network between robots, sensors, and mobile
devices. The project also makes a significant contribution
to the standardization of data-structures and interfaces. Fi-
nally, rosbridge [17], an open source project, focuses on the
external communication between a robot and a single ROS
environment in the cloud.

With the open source2 project Rapyuta3, we attempt to
solve some of the remaining challenges of building a com-
plete cloud robotics platform. Rapyuta is based on an elastic
computing model [4] that dynamically allocates secure com-
puting environments (or clones) for robots. These computing
environments are tightly interconnected, allowing robots to
share some of their services and information with the other
robots. This interconnection makes Rapyuta a useful platform
for multi-robot deployments [18].

Furthermore, Rapyuta’s computing environments provide
high bandwidth access to the RoboEarth [19] knowledge
repository enabling robots to benefit from the experience
of other robots. Note that until now robots only submitted
and queried data in the RoboEarth repository, and all the
processing, planning, and reasoning on this data happened
locally on the robot. With Rapyuta, robots can perform these
tasks in the cloud. Thus, Rapyuta is also called the RoboEarth
Cloud Engine.

Rapyuta’s ROS compatible computing environments al-
low it to run all, which is more than 3000, open source
ROS packages without any modifications while sidestepping
severe drawbacks of client-side robotics applications, includ-
ing configuration/setup overheads, dependence on custom
middleware, as well as maintenance and update overheads.
Finally, Rapyuta’s WebSocket-based communication server
provides bidirectional, full duplex communications with the
physical robot.

The remainder of this paper is structured as follows: In
Section II we present the architecture with design choices
and in Section III we give a detailed explanation of Rapyuta’s
communication protocols. This is followed by details on
some standard use case configurations and performance mea-
surements in Section IV. Finally, we conclude in Section V
with a brief outlook on future developments.

II. ARCHITECTURE AND DESIGN CHOICES

Rapyuta consists mainly of the computing environments
for robots to offload their tasks, a set of communication
protocols, a set of core tasks to administer the system, and a
command data structure to organize the system administra-
tion.

A. Computing Environments

Rapyuta’s computing environments are implemented using
Linux Containers [20], which provide a lightweight and
customizable solution. In principle, Linux Containers can be
thought of as an extended version of chroot [21] which
provides isolation of processes and system resources within a
single host. Since Linux Containers do not emulate hardware
(similar to platform virtualization technologies), and since
all processes share the same kernel provided by the host,
applications run at native speed.

2A public alpha release of Rapyuta is available from
http://github.com/IDSCETHZurich/rce under Apache License, Version
2.0.

3Rapyuta is part of the RoboEarth initiative aimed at building a world
wide web for robots. Visit http://www.roboearth.org/ for details.

Furthermore, Linux Containers also allow easy configura-
tion of disk quotas, memory limits, I/O rate limits, and CPU
quotas, which enables a single environment to be scaled up
to fit the biggest machine instance of the IaaS [10] provider,
or scaled down to just relay data to the Hadoop backend
similar to the DAvinCI [8] framework.

The computing environment is set up to run any process
that is a ROS node, and all processes within a single
environment communicate with each other using the ROS in-
terprocess communication. Having the well-established ROS
protocol inside the environments allows them to run all
existing ROS packages without any modification, and lowers
the hurdle for application developers.

B. Communication Protocols
Rapyuta’s communication protocols are split into three

parts. The first part is the internal communication protocol
that covers all communication between the Rapytua pro-
cesses. The next part is the external communication protocol
which defines the data transfer between the physical robot
and the cloud infrastructure running Rapyuta. The last part
is the communication between Rapyuta and the applications
running inside the containers, which uses ROS as outlined
above.

Rapyuta Boundary
Master
Task Set

EP
I

I

P

P

RPC

EP
I

I

P

P

RPC

Fig. 2. The basic communication channels of Rapyuta: The Endpoints (EP)
are connected to the master using a Remote Procedure Call (RPC) protocol.
Additionally, the Endpoints have Interfaces (I) for connections to robots or
computing environments as well as Ports (P) for communication between
Endpoints.

Figure 2 shows the basic communication channels of
Rapyuta. One of the basic building blocks of Rapyuta’s
communication protocol is the Endpoint which represents
a process that consists of Ports and Interfaces.

The Interfaces are used for external communication with a
non-Rapyuta process that can either be running on the robot
or in the computing environment, and they implement an
abstract class that can represent a service-provider, service-
client, topic-publisher or a topic-subscriber. Interfaces of
container Endpoints are standard ROS interfaces. Meanwhile,
Interfaces of robot Endpoints provide converters, which
convert a data message from the external communication
format (JSON4 object) to the internal communication format
(serialized ROS message) and vice versa.

4JSON (JavaScript Object Notation) is a lightweight data-interchange
format with a focus on human readability.

Meanwhile, the Ports are used for internal communication
between Endpoint processes. Another form of internal com-
munication, based on RPC5, occurs between the Endpoints
and the Master, the main controller process. Section III
presents Rapyuta’s communication protocols in detail.

C. Core Tasks

This sub-section presents Rapyuta’s four task sets.
1) Master: The master is the main controller task that

monitors and maintains the command data structure which
includes

• organization of connection between robots and Rapyuta
• processing of all configuration requests from robots
• monitoring network of other task sets

As opposed to the other task sets, only a single copy of the
Master task set runs inside a Rapyuta platform.

2) Robot: The Robot task set is defined by the capabilities
necessary to communicate with a robot. It includes

• forwarding of configuration requests to the Master
• conversion of data messages
• communication with robots and other Endpoints
3) Environment: The Environment task set is defined by

the capabilities necessary to communicate with a computing
environment. It includes

• communication with ROS nodes and other Endpoints
• launching/stopping ROS nodes
• adding/removing parameters

A process containing the environment task set runs inside
every computing environment.

4) Container: The Container task set is defined by the
capabilities necessary to start/stop computing environments.
A process containing the container task set runs inside every
machine.

D. Command Data Structure

Rapyuta is organized in a centralized command data
structure with four components (see Figure 3).

Rapyuta

Network User LoadBalancer Distributor

 1 1 1 0..n

Fig. 3. Simplified UML diagram of Rapyuta’s top level command data
structure.

The Network (see Figure 4) is the most complex part
of the data structure. Its elements are used to provide the
basic abstraction of the whole platform and are referenced
by the other three components. It is also used to organize the
internal and external communication which will be discussed
in detail in Section III. The addition of Namespaces in

5RPC (Remote Procedure Call) is a communication protocol which allows
a process to execute a procedure in another process.

the command data structure enables an Endpoint to group
Interfaces for a single robot or a computing environment and
the addition of the connection classes (EndpointConnection,
InterfaceConnection, and Connection) simplifies the refer-
ence counting for the connections.

Network

EndpointEndpointConnection

 0..n

2

Namespace

InterfacePort

InterfaceConnection

1 1

2

Connection

 0..n

 2

 0..n

 0..n

 1

 0..n

 1

 0..n

 1

 0..n

 1

0..n

 1

Fig. 4. Simplified UML diagram of Rapyuta’s top level component
Network.

The User (see Figure 5) represents generally a human who
has one or more robots that need to be connected to the
cloud. Each User has a unique API key, which is used by
the robots for authentication. Additionally, all requests are
initially processed by the User and handed off to another
component for further processing if necessary. The User can
have multiple Namespaces which, in turn, can have several
Interfaces.

User
apiKey : str

Namespace

Robot Container

Interface 1 0..n 1 0..n

Fig. 5. Simplified UML diagram of Rapyuta’s top level component User.

The LoadBalancer (see Figure 6) is used to manage
the Machines which are intended to run the computing
environments discussed in Section II-A. Therefore the Ma-
chines have a representation of each Container they are
running. Additionally, the load balancer is used to assign
new containers to the appropriate machine.

Finally, the Distributor is used to distribute the incoming
connections from the robots over the available robot End-
points which are discussed in detail in Section III.

III. COMMUNICATION PROTOCOLS
This section presents Rapyuta’s internal and external com-

munication protocols in more detail and shows a concrete

LoadBalancer Machine Container0..n 1 0..n

Fig. 6. Simplified UML diagram of Rapyuta’s top level component Load
Balancer.

example of the external communication procedure.

A. Internal Communication Protocol
All Rapyuta processes communicate with each other over

UNIX sockets and the protocol is built using the Twisted
framework [22], an event-driven networking engine that uses
asynchronous messaging. The type of messages used for the
internal communication can be split into two categories. The
first type consists of all the administrative messages used to
configure Rapyuta. All these messages either originate or end
in the process containing the command data structure, which
is typically the Master task set. The Perspective Broker, an
RPC implementation for the Twisted framework, is used as
the protocol for the administrative messages. The second and
the most frequent type is the data message. For this type
of communication a length prefixed protocol is used. The
data message itself is internally transported as a serialized
ROS message. For Rapyuta an additional header containing
the ID of the sending Interface, an optional destination ID
(necessary for service type interfaces), and the message ID
which is used also for the external communication is added.
This results in a header length of 22 or 38 bytes plus the
message ID whose length has an upper limit of 255 bytes.

B. External Communication Protocol
The robots connect to Rapyuta using the WebSockets

protocol [23], similar to rosbridge [17]. The protocol was
implemented using the Autobahn tools [24], which, in turn,
are again based on the Twisted framework [22]. Unlike a
common web server, which uses pull technology, the use of
WebSockets allows Rapyuta to push the results. Note that this
protocol is very general compared to the ROS protocol used
in the DAvinCI [8] framework, allowing easy integration of
non-ROS robots, mobile devices and even web-browsers into
the system.

The messages between the Robot and Rapyuta are pure
ASCII JSON messages that have the following top level
structure
{ "type":"...", "data": ... }

which is an unordered collection of key/value pairs. Note
that the value can, in turn, be a collection of key/values. The
value of the type key is a string and denotes the type of
message found in data:

• CC - Create Container message that creates a secure
computing environment in the cloud

• DC - Destroy Container message destroys an existing
computing environment

• CN - Configure Components message allows to
launch/stop ROS nodes, set/remove parameters in the
ROS parameter server, and add/remove Interfaces

• CX - Configure Connections message allows to connect/
disconnect Interfaces

• DM - Data messages are used to send/receive sensor/-
command messages to/from application nodes (for more
examples see Section III-D)

• ST - Status message pushed from Rapyuta to the robot
• ER - Error message also pushed from Rapyuta to the

robot

C. Handling Big Binary Messages
The WebSocket interface supports transportation of binary

blobs and, for some types of data, it is better to transport
them as a binary blob instead of using their corresponding
ROS message type encoded as a JSON string. For example,
the RoboEarth logo (RGBA, 842x595), if transported as PNG
(lossless data compression), takes 18 kB in bandwidth but
uses approximately 2.0 MB when transported as a serialized
ROS message. Converting the ROS message into a JSON
string would result in an even larger message size.

To exploit this method of transportation, special converters
between the binary format and corresponding ROS message
must be provided on the Rapyuta side. Rapyuta provides a
default PNG-to-sensor msgs/Image converter as an example
of how to build new converters.

When sending a binary message, first a standard data
message is sent as a JSON string with a reference to the
binary blob that will follow. The message is a DM type
message having a data key with value:
"iTag" : "converter_modifyImage",
"type" : "sensor_msgs/Image",
"msgID" : "msgID_0",
"msg*" : "f9612e9b3c7945ef8643f9f590f0033a"

The ’*’ in the last line indicates that the value/resource will
follow as a binary blob with the given ID as header. Note that
the ID must be unique only within the current connection.

D. Basic Communication Example
In order to illustrate the usage and communication proto-

cols, in this subsection we provide a simple example where
a Roomba vacuum cleaning robot with a wireless connection
uses Rapyuta to record/log its 2D pose. The communication
takes place in the following order:

1) Initialization: Using the user ID roombaOwner, the
robot ID roomba, and the API key secret, the Roomba
performs the initialization by sending the following HTTP
request to the master containing the command data structure:
http://[domain]:[port]?userID=roombaOwner&robotID=

roomba&key=secret&version=[version]

A robot Endpoint is assigned on an available machine and
the machine’s URL together with an authentication key is
returned to the Roomba as a JSON encoded response.
{
"url":"ws://[domain]:[port]/",
"key":"8f42eeedefb0463a834c582782a9e2bc"

}

As the final step of the initialization process, Roomba makes
a connection using the received URL and registers with the
assigned robot Endpoint using the following URL.

ws://[domain]:[port]/?userID=roombaOwner&robotID=
roomba&key=8f42eeedefb0463a834c582782a9e2bc

2) Container Creation: The Roomba creates a computing
environment and tags it with a CC type message having a
data key with value:

"containerTag" : "roombaClone"

Note that the tag must be unique within the robots that use
the same user ID and container creation also includes starting
the necessary processes inside the container.

3) Configure Nodes: The Roomba launches the logging
node (posRecorder.py) and starts two Interfaces with tags
using a CN type message having a data key with value:

"addNodes" : [{
"containerTag" : "roombaClone",
"nodeTag" : "positionRecorder",
"pkg" : "testPkg",
"exe" : "posRecorder.py"

}],
"addInterfaces" : [{

"endpointTag" : "roomba",
"interfaceTag" : "pos",
"interfaceType" : "SubscriberConverter",
"className" : "geometry_msgs/Pose2D"

}, {
"endpointTag" : "roombaClone",
"interfaceTag" : "pos",
"interfaceType" : "PublisherInterface",
"className" : "geometry_msgs/Pose2D",
"addr" : "/posPub"

}]

Note that the above complex message can be split into
multiple messages that launches the node and start Interfaces
separately.

4) Binding Interfaces: Before Roomba can use the added
node the two Interfaces have to be connected. This is
achieved with a CX type message having a data key with
value:

"connect" : [{
"tagA" : "roomba/pos",
"tagB" : "roombaClone/pos"

}]

5) Data: Finally, the Roomba starts sending the data
message that contains the 2D-Pose information, i.e., a DM
type message having a data key with value:

"iTag" : "pos",
"type" : "geometry_msgs/Pose2D",
"msgID" : "id",
"msg" : {
"x" : 3.57,
"y" : -44.5,
"theta" : 0.581

}

This data message (ASCII JSON) is converted to a ROS
message type at roomba/pos and is sent to roombaClone/-
pos. Finally, roombaClone/pos transfers the message to the
posRecorder.py node via the ROS environment.

E. Communication with RoboEarth
After creating a container, Rapyuta launches the

re comm core6 node inside the container by default. This
node exposes the RoboEarth repository by providing services
to download, upload, update, delete, and query action recipes,
object models, and environments stored in the RoboEarth
repository.

IV. USE CASES AND PERFORMANCE
A. Use cases

Figure 7 shows the four tasks sets (see Section II-C) split
up into the four processes, Master process, Robot EP (End-
point) process, Environment EP process, and Container pro-
cess, and how they are combined to build a PaaS framework
with interconnected computing units. The Master process
runs on a single dedicated server. In every other machine
a Robot EP and a Container process are running. The two
task sets are run separately, because the Container process
requires super user privileges to start and stop containers
which could pose a severe security risk when combined with
the open accessible Robot EP process. The fourth process,
the Environment EP process, is running in each computing
environment. Note that this configuration allows all three
elastic computing models to be deployed for cloud robotics,
as proposed in [4], the peer-based, proxy-based, and the
clone-based model.

An extreme case of the above use case is where everything
runs in a single server with one container. This mimics a
rosbridge [17] system and can be used as a sandbox to
develop cloud robotics applications and investigate latencies.

Finally, in Figure 8 we show how to set up a network of
robots using the Robot EP and Master processes. Although
Figure 8 shows a single server, multiple machines with
interconnected Robot EP processes are also feasible.

Master
Task Set

Robot
EPI

I

I

I

Robot

Robot

Robot

Robot

Fig. 8. Use case 2: Process configuration for setting up a network of robots
running a Robot EP and Master process in a single server (light-gray block).

Note that the servers mentioned in both use cases (light-
gray blocks in Figures 7 and 8) can also be instances

6re comm core is a stripped down version of the re comm ROS
package containing only the communications aspects. re comm core was
provided to us by our RoboEarth colleague Alexander Perzylo of Technical
University Munich.

Master
Task Set

Container
Task Set

Robot
EPI

I

P

P

P

LXC

LXC

Robot

Robot

Container
Task Set

Robot
EPP I

P

P

LXC

Robot

Environment EPP

I I

ROS
Node

ROS
Node

To
Ro
bo
Ea
rth

Re
po
sit
or
y

re
comm
core

Fig. 7. Use case 1: The typical use case of Rapyuta processes (see Section IV-A) deployed on three servers (light-gray blocks) to build a PaaS framework
with interconnected computing environments (LXC, dark-gray blocks). Here the master task set runs as a single process on one of the servers and the other
two servers are used to deploy containers. Inside each server that hosts containers, robot task set run as a single process and inside each container the
environment task set run as a single process. The computing environment denoted by LXC (Linux Containers) is enlarged in the right side of the figure.
Note that the dashed arrow from the re comm core node denotes the connection to the RoboEarth knowledge repository within the same cluster/data
center, thus providing a high bandwidth access.

of an IaaS [10] provider such as Amazon EC2 [25] or
Rackspace [26].

B. Performance Measurement
In this subsection we present experimental results for

round-trip times of a Rapyuta instance running in two
machines. The following four communications paths were
analyzed for 10 data sizes.

• R2C: Robot to Container
• C2C-1: Container to Container where both containers

are hosted by the same machine
• C2C-2: Container to Container where the containers are

hosted by different machines
• N2N: Communication path between two nodes running

in the same container (baseline)
To evaluate the round-trip times, a string message with
different string sizes was passed between two processes.
Note that here the robot was a Python client with a wireless
connection in ETH Zurich, and Rapyuta was deployed in
RackSpace [26] servers located in Dallas, Texas.

The results in Figure 9 show:
1) External communication (R2C) is the biggest con-

straint of Rapyuta’s throughput.
2) The difference between containers running in the same

machine and different machines, due to the iptables
and port forwarding overheads, is relatively small (< 1
[ms]).

3) Rapyuta introduces an overhead of 1 [ms] for data sizes
up to 1 MB, which can be seen from the differences
between C2C-1 and N2N.

R2C
C2C-2
C2C-1
N2N

tim
e

[m
s]

number of characters
101 102 103 104 105 10610−1

100

101

102

103

104

105

Fig. 9. Round-trip times (RTT) along four different type of paths in the
Rapyuta framework. The External communication has the largest RTT. For
container to container communications, the RTT is slightly higher when
containers are hosted in different machines. Finally, the RTT within a
container under the ROS protocol is given as a baseline.

V. CONCLUSION AND OUTLOOK

In this paper we described the design and implementation
of Rapyuta, a PaaS framework for robots. Rapyuta, based
on an elastic computing model [4], dynamically allocates
secured computing environments for robots.

We showed how the computing environments and the
communications protocols allow the robots to offload their
computation to the cloud. We also described how Rapyuta’s

computing environments can be interconnected to share
specific resources with other environments, making it a
suitable framework for multi-robot control and coordination.
Furthermore, we explained how the computing environment
exposes the RoboEarth database to the applications running
inside it.

Communication protocols were presented with comments
on the design choices and an example was provided to clarify
different types of messages and to show how they work
together. With respect to communications we also provided
some performance results of the communication protocols.

Finally, we showed the flexibility of Rapyuta’s modular
design by giving two specific cloud robotic configurations.

A public alpha release is available from
http://github.com/IDSCETHZurich/rce under Apache
License, Version 2.0. Additionally, clients in Python and
C++ are provided.

For the planned beta release several enhancements are
being considered. To increase the stability of Rapyuta the
command data structure (see Section II-D) will be stored in
a redundant manner such that a crash of the Master process
does not result in a complete failure of Rapyuta. As a second
enhancement besides the JSON encoded data structure used
in the external communication protocol we plan to support
Google’s protocol buffers for flexibility and efficiency [27].
Furthermore, the possibility of using protocol buffers for
internal communications will be investigated. Finally, we
plan to look into the integration of software frameworks other
than ROS into Rapyuta.

ACKNOWLEDGMENTS

This research was funded by the European Union Seventh
Framework Programme FP7/2007-2013 under grant agree-
ment no. 248942 RoboEarth. The authors would like to
express their gratitude towards Carolina Flores and Christine
Waibel for helping with the promotional video, Alexander
Perzylo of Technical University Munich for providing the
re comm core package, and all RoboEarth colleagues for
their valuable feedback and motivation.

REFERENCES

[1] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth
grasp point detection based on multiple-view geometric cues with
application to robotic towel folding,” in Proc. IEEE Int. Conf. Robotics
and Automation, May 2010, pp. 2308 –2315.

[2] J. Bohren, R. Rusu, E. Jones, E. Marder-Eppstein, C. Pantofaru,
M. Wise, L. Mosenlechner, W. Meeussen, and S. Holzer, “Towards
autonomous robotic butlers: Lessons learned with the pr2,” in Proc.
IEEE Int. Conf. Robotics and Automation, May 2011, pp. 5568 –5575.

[3] International Federation of Robotics, “World robotics - service robots
2011,” 2011.

[4] G. Hu, W. P. Tay, and Y. Wen, “Cloud robotics: architecture, challenges
and applications,” Network, IEEE, vol. 26, no. 3, pp. 21–28, May-June
2012.

[5] K. Goldberg and B. Kehoe, “Cloud robotics and automation: A survey
of related work,” EECS Department, University of California, Berke-
ley, Tech. Rep. UCB/EECS-2013-5, Jan 2013. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-5.html

[6] B. Kehoe, D. Berenson, and K. Goldberg, “Toward cloud-based grasp-
ing with uncertainty in shape: Estimating lower bounds on achieving
force closure with zero-slip push grasps.” in Proc. IEEE Int. Conf.
Robotics and Automation. IEEE, May 2012, pp. 576–583.

[7] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg,
“Cloud-Based Robot Grasping with the Google Object Recognition
Engine,” in IEEE International Conference on Robotics and Automa-
tion. IEEE, May 2013.

[8] R. Arumugam, V. R. Enti, K. Baskaran, and A. S. Kumar, “DAvinCi:
A cloud computing framework for service robots,” in Proc. IEEE Int.
Conf. Robotics and Automation. IEEE, May 2010, pp. 3084–3089.

[9] L. Garber, “Wi-fi races into a faster future,” Computer, vol. 45, no. 3,
pp. 13 –16, march 2012.

[10] P. Mell and T. Grance, “The NIST definition of cloud computing,” Na-
tional Institute of Standards and Technology, Special Publication 800-
145, 2011, available http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf.

[11] Google, “Google App Engine,” 2008. [Online]. Available: https:
//developers.google.com/appengine/

[12] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[13] J. Lindenbaum, A. Wiggins, and O. Henry, “Heroku,” 2007. [Online].
Available: http://www.heroku.com/

[14] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[15] K. Kamei, S. Nishio, N. Hagita, and M. Sato, “Cloud Networked
Robotics,” Network, IEEE, vol. 26, no. 3, pp. 28–34, May-June 2012.

[16] M. Sato, K. Kamei, S. Nishio, and N. Hagita, “The ubiquitous net-
work robot platform: Common platform for continuous daily robotic
services,” in System Integration (SII), 2011 IEEE/SICE Int. Symp., Dec
2011, pp. 318 –323.

[17] G. T. Jay, “brown remotelab: rosbridge,” 2012. [Online]. Available:
http://www.rosbridge.org/

[18] R. D’Andrea and P. Wurman, “Future challenges of coordinating hun-
dreds of autonomous vehicles in distribution facilities,” in Technologies
for Practical Robot Applications, 2008, IEEE Int. Conf., nov. 2008,
pp. 80 –83.

[19] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-
Lopez, K. Haussermann, R. Janssen, J. Montiel, A. Perzylo,
B. Schiessle, M. Tenorth, O. Zweigle, and R. van de Molengraft,
“Roboearth,” Robotics Automation Mag., IEEE, vol. 18, no. 2, pp.
69 –82, june 2011.

[20] “Linux Containers,” 2012. [Online]. Available: http://lxc.sourceforge.
net/

[21] “chroot, Linux programmer’s manual,” 2012. [Online]. Available: http:
//www.kernel.org/doc/man-pages/online/pages/man2/chroot.2.html

[22] G. Lefkowitz, “Twisted,” 2012. [Online]. Available: http:
//twistedmatrix.com/

[23] I. Fette and A. Melnikov, “The WebSocket Protocol, RFC 6455,”
2011. [Online]. Available: http://tools.ietf.org/html/rfc6455

[24] Tavendo GmbH, “Autobahn WebSockets,” 2012. [Online]. Available:
http://autobahn.ws/

[25] Amazon.com Inc., “Amazon Elastic Compute Cloud,” 2012. [Online].
Available: http://aws.amazon.com/ec2/am

[26] Rackspace US, Inc., “The Rackspace Open Cloud,” 2012. [Online].
Available: http://www.rackspace.com/

[27] Google Inc., “protocol buffers,” 2012. [Online]. Available: http:
//developers.google.com/protocol-buffers

